全自动原位杂交仪实验方法

荧光原位杂交是一门新兴的分子细胞遗传学技术,是20世纪80年代末期在原有的放射性原位杂交技术的基础上发展起来的一种非放射性原位杂交技术。目前这项技术已经广泛应用于动植物基因组结构研究、染色体精细结构变异分析、病毒感染分析、人类产前诊断、肿瘤遗传学和基因组进化研究待许多领域。全自动原位杂交仪FISH的基本原理是用已知的标记单链核酸为探针,按照碱基互补的原则,与待检材料中未知的单链核酸进行异性结合,形成可被检测的杂交双链核酸。由于DNA分子在染色体上是沿着染色体纵轴呈线性排列,因而可以探针直接与染色体进行杂交从而将特定的基因在染色体上定位。与传统的放射性标记原位杂交相比,荧光原位杂交具有快速、检测信号强、杂交特异性高和可以多重染色等特点,因此在分子细胞遗传学领域受到普遍关注。

杂交所用的探针大致可以分类三类:1)染色体特异重复序列探针,例如α卫星、卫星III类的探针,其杂交靶位常大于1Mb,不含散在重复序列,与靶位结合紧密,杂交信号强,易于检测;2)全染色体或染色体区域特异性探针,其由一条染色体或染色体上某一区段上极端不同的核苷酸片段所组成,可由克隆到噬菌体和质粒中的染色体特异大片段获得;3)特异性位置探针,由一个或几个克隆序列组成。 

探针的荧光素标记可以采用直接和间接标记的方法。间接标记是采用生物素标记DNA探针,杂交之后用藕联有荧光素亲和素或者链霉亲和素进行检测,同时还可以利用亲和素-生物素-荧光素复合物,将荧光信号进行放大,从而可以检测500bp的片段。而直接标记法是将荧光素直接与探针核苷酸或磷酸戊糖骨架共价结合,或在缺口平移法标记探针时将荧光素核苷三磷酸掺入。直接标记法在检测时步骤简单,但由于不能进行信号放大,因此灵敏度不如间接标记的方法。

荧光原位杂交技术问世于70年代后期,其曾多用于染色体异常的研究,近年来随着FISH所应用的探针钟类的不断增多,特别是全Cosmid探针及染色体原位抑制杂交技术的出现,使FISH技术不仅在细胞遗传学方面,而且还广泛应用于肿瘤学研究,如基因诊断基因定位等。

原有的放射性同位素原位杂交技术存在着较多缺点,诸如每次检验均 需重新标记探针,已标记的探针表现出明显的不稳定性,需要较和时间的曝光时间和对环境的污染等。在观察结果时,需要较多的分裂进行统计学分析。>>>胜创生物。

此外,由于放射性银粒和染色体聚集的不同平面,可能引起计数上的误差等。与之比FISH则具有①操作操作简便,探针标记后稳定,一次标记后可使用二年②方法敏感,能迅速得到结果③在同一标本上,可同时检测几种不同探针④不仅可用于分裂期细胞染色体数量或结构变化的研究,而且还可用于间期细胞的染色体数量及基因改变的研究等特点。

荧光原位杂交技术是一种重要的非放射性原位杂交技术。它的基本原理是:如果被检测的染色体或DNA纤维切片上的靶DNA与所用的核酸探针是同源互补的,二者经变性-退火-复性,即可形成靶DNA与核酸探针的杂交体。将核酸探针的某一种核苷酸标记上报告分子如生物素、地高辛,可利用该报告分子与荧光素标记的特异亲和素之间的免疫化学反应,经荧光检测体系在镜下对待测DNA进行定性、定量或相对定位分析。

基本原理:简单点说就是碱基互补配对原则。来讲的话,就是我们将外源核酸(也就是常说的分子探针)与组织、细胞上待检测的DNA或RNA进行配对,形成核酸杂交分子,再经过一定手段将这个杂交分子的位置显示出来。

实验技术的更新是很快的,在明确了该技术的可行性后,科学家进一步改进并进行分类,主要有以下几类:荧光原位杂交技术:DNA分子原位杂交技术;在原技术手段上增加了荧光元素,技术手段较为先进,易掌握,运用广泛。多彩色荧光原位杂交技术:显而易见,是荧光原位杂交的升级版,采用多个荧光来检测,目前的发展及运用也是较多的。原位PCR:将原位杂交结合PCR技术发展起来的实验方法。基因组:该技术在我们的领域可能运用的毕竟少,主要是根据物种DNA同源性差异实现,在农作物等的杂交育种上运用较广。


除非注明,发表在“原位杂交仪”的微生物限度仪『开放式过滤器(反复使用)』版权归原位杂交仪_admin所有。 转载请注明出处为“本文转载于『原位杂交仪』原地址http://lygznh.com/post/288.html